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Numerical modeling of the motion of rigid ellipsoidal objects in slow
viscous flows: A new approach
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Abstract

A simple algorithm for modeling the rotation of rigid ellipsoidal objects in viscous flows based on Jeffery’s (1922, Proceedings of the Royal
Society of London A102, 161e179) theory is presented and is implemented in a fully graphic mathematics application Mathcad� (http://
www.mathsoft.com). The orientation of ellipsoidal objects is specified in terms of polar coordinate angles that can be easily converted to the
trend and plunge angles of the three principal axes rather than the Euler angles. With the Mathcad worksheets presented in the supplementary
data associated with this paper, modeling the rotation paths of individual rigid objects, the development of inclusion trail geometry within syn-
kinematic porphyroblasts, and the development of preferred orientation and shape fabrics for a population of rigid objects becomes as easy a task
as using a spreadsheet. The shape and preferred orientation fabrics for a population of rigid objects can be presented in both a three-dimensional
form and a two-dimensional form, allowing easy comparison between field data and model predictions. The modeler can customize the type and
format of the output to best fit the purpose of the investigation and to facilitate the comparison of model predictions with geological observations.
Application examples are presented for various types of modeling involving rigid objects.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Jeffery’s (1922) theory for the rotation of a rigid ellipsoidal
object in a Newtonian fluid has been widely applied by geol-
ogists to the study of fabrics in rocks (e.g., Gay, 1966,
1968a,b; Ramsay, 1967, p. 225; Reed and Tryggvason, 1974;
Hobbs et al., 1976, p. 285; Ghosh and Ramberg, 1976; Tullis,
1976; Harvey and Ferguson, 1978; Freeman, 1985; Passchier,
1987; Je�zek et al., 1994, 1996; Arbaret et al,. 2000). The the-
ory has been tested by many experiments (Taylor, 1923; Eirich
and Mark, 1937; Trevelyan and Mason, 1951; Goldsmith and
Mason, 1967; Ghosh and Ramberg, 1976; Ferguson, 1979;
Arbaret et al., 2001), and Bretherton (1962) and Willis
(1977) have extended the theory to include rigid objects of
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irregular, non-ellipsoidal shapes. There are many recent works
in the geology literature on how the rotational behavior of
rigid objects in a viscous flow may be affected by (1) the
interface property between the matrix and the object (Ilde-
fonse and Mancktelow, 1993; Mancktelow et al., 2002; Ceriani
et al., 2003; Schmid and Podladchikov, 2004, 2005; Mandal
et al., 2005b), (2) the boundary constraints where the rigid
objects are large compared to the thickness of the hosting
shear zone (Marques and Coelho, 2001), (3) the interaction
between objects (Ildefonse et al., 1992a,b; Marques and
Bose, 2004; Mandal et al., 2005b), and (4) the matrix anisot-
ropy (Mandal et al., 2005a). However, whether applying
Jeffery’s theory directly to interpret geological fabrics or as
a reference model against which to consider additional vari-
ables, it is always necessary to solve Jeffery’s equations so
that theoretical predictions are generated which can be tested
by experiments and geological observations.
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For special cases, Jeffery’s equations can be solved analyt-
ically. Jeffery (1922) himself provided the analytical solution
for spheroids in simple shear flows. Gay (1966, 1968a) solved
the equations for coaxial flows, and Je�zek et al. (1996) found
the analytical solutions for spheroids in all monoclinic flows.
In the Supplement file, I present analytical solutions and sum-
marize the rotation path patterns for spheroids in monoclinic
flows using polar coordinate angles, rather than Euler angles,
for specifying the orientation of objects. Beyond these special
cases, Jeffery’s equations must be solved numerically (Giers-
zewski and Chaffey, 1978; Hinch and Leal, 1979; Freeman,
1985; Je�zek et al., 1994). In this respect, Je�zek’s (1994) pro-
grams are the most robust. They can be used to investigate
the rotation path of an individual object as well as the evolu-
tion of the preferred orientation defined by a population
of non-interacting rigid objects in any given flow field. The
present paper develops a simple solution scheme for Jeffery’s
equations and implements it in a fully graphic mathematics ap-
plication, Mathcad� (http://www.mathsoft.com). It advances
the existing modeling of rigid objects in viscous flows in the
following respects. First, in the present solution scheme, the
orientation of the rigid object is specified by polar coordinate
angles that are easily converted to the trend and plunge angles
of the three principal axes of the object rather than the Euler
angles used by Jeffery (1922), Bretherton (1962), Je�zek
(1994), and many others. Unlike the Euler angles, trend and
plunge angles are measurable from geological observations
and are easier to visualize. Second, the modeling predictions
are presented in both a three-dimensional orientation/shape
fabric form and a two-dimensional (sectional) orientation/
shape fabric form. In many geological situations, the three-
dimensional shape and orientation of a rigid object (such as
a pebble) are not directly measurable unless the object is
extractable; only the elliptical shape (axial ratios, Rf) and pitch
angles (4) of the ellipse’s long axis on an exposed section are
measurable (the Rf/4 type data of Ramsay, 1967; Dunnet,
1969). The present modeling allows direct comparison
between model predictions and geological observations. Third,
Mathcad� (http://www.mathsoft.com) is a fully graphic math-
ematics application. Modeling using the Mathcad worksheets
provided with this paper is as user-friendly as using a spread-
sheet. Finally, the solution scheme developed in this paper will
be further extended in another paper (Jiang, in press) for
numerical modeling of deformable ellipsoidal objects embed-
ded in slow viscous flows based on the theory of Eshelby
(1957, 1959).

2. Brief summary of Jeffery’s theory

Before presenting the modeling scheme, it is necessary to
briefly summarize Jeffery’s (1922) theory which describes
the motion of a single ellipsoidal rigid object embedded in
a slow (inertial effects are therefore negligible) homogeneous
flow of Newtonian fluid.

Let us denote the three semi-axes of the rigid ellipsoid a1,
a2, and a3. The three semi-axes can have any relative lengths,
but for simplicity, we will adopt the following convention. For
triaxial objects, we use a1, a2, and a3 to represent, respec-
tively, the long, intermediate, and the short semi-axes
(a1> a2> a3); for spheroidal objects (prolate and oblate ellip-
soids) we use a1 for the unique semi-axis and the other two
semi-axes (a2¼ a3, and mutually perpendicular) are arbitrarily
defined on the plane normal to the a1-axis. A right-handed
coordinate system, x0y0z0, with x0-, y0-, and z0-axes parallel,
respectively, to the a1-, a2-, and a3-axes (Fig. 1), can be
defined. This coordinate system rotates with the rigid object
in a fixed external coordinate system, xyz, in which the flow
of the matrix fluid is defined (Fig. 1). Let the unit vectors par-
allel to the x0-, y0-, and z0-axes be, respectively, e01, e02, and e03
and those parallel to the x-, y-, and z-axes, respectively, e1, e2,
and e3, and let the two coordinate systems have the same
origin.

A position vector expressed by coordinates (x, y, z) in the
xyz system is denoted x. In the x0y0z0 system it is denoted x0

with corresponding coordinates (x0, y0, z0). x and x0 are related
by:

x0 ¼Qx ð1aÞ

x¼QTx0 ð1bÞ

where Q is the coordinate transformation tensor (QT, its trans-
pose) defined by:

e0i ¼Qei ð2aÞ

ei ¼QTe0i ð2bÞ
The homogeneous flow of the matrix is described in the xyz

system by its Eulerian velocity gradient tensor L which can be
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Fig. 1. External coordinate system xyz and the coordinate system parallel to the

three principal axes of the rigid ellipsoid. a1, a2, and a3 are the three semi-axes.

The orientation of an ellipsoid in 3D space is defined by three polar coordinate

angles. See text for details.
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decomposed into a strain rate tensor D and a vorticity tensor
W according to:

D¼ 1

2

�
LþLT

�
; W¼ 1

2

�
L�LT

�
ð3Þ

At any instant, the strain rate and the vorticity tensors ex-
pressed in the x0y0z0 system are, following the tensor transfor-
mation rule:

D0 ¼QDQT; W0 ¼QWQT ð4Þ
To define the shape of a rigid ellipsoidal object, Jeffery

(1922) used its three shape factors, B1, B2, and B3 defined as
B1 ¼ ða2

2 � a2
3Þ=ða2

2 þ a2
3Þ, B2 ¼ ða2

3 � a2
1Þ=ða2

3 þ a2
1Þ, and B3

¼ ða2
1 � a2

2Þ=ða2
1 þ a2

2Þ. Clearly, only two of the three shape
factors are independent for it can be easily shown that B3 ¼
�ðB1 þ B2Þ=ð1þ B1B2Þ.

Jeffery (1922) shows that the rotation of the rigid ellipsoi-
dal object is governed by an angular velocity determined by
the matrix flow, the shape of the rigid object, and its instanta-
neous orientation in the flow. Expressed in the x0y0z0 coordinate
system, this angular velocity is:

u0 ¼

0
@W 0

32þB1$D023

W 0
13þB2$D013

W 0
21þB3$D012

1
A ð5Þ

Following the vector transformation rule, the angular velocity
(Eq. (5)), expressed in the xyz system, is:

u¼QTu0 ð6Þ
The rotation of the three principal axes of the rigid ellipsoid

is described by the time rate of the three unit vectors parallel
to their principal axes:

de0i
dt
¼u� e0i ¼Qe0i ði¼ 1; 2; 3Þ ð7Þ

where Q is the tensor form of the angular velocity such
that u� phQp for any vector p, (e.g., Basxar and Wei-
chert, 2000, p. 30).

3. Specifying the orientation of a rigid ellipsoidal object

In this section, we express the above equations in terms of
the orientation of the ellipsoidal object.
First, the orientation of a line can be represented by
a unit vector parallel to it (e.g., Fisher et al., 1987). A
unit vector, u, in 3D space xyz is completely defined by
its two polar coordinate angles e the angle q between x-
axis and the projection of u on the xy-plane, and the angle
f between z-axis and u (Fig. 2a). The ranges for q and f

are, respectively, 0� q� 2p and 0� f�p (all angles are
in radians unless otherwise indicated). In the geographic
coordinate system (Fig. 2b), if f�p/2 then q is simply
the plunge direction of u and p/2�f is the plunge angle
of u. If f>p/2 then q�p is the plunge direction of u
and f�p/2 is the plunge angle. By considering Fig. 2,
the three components of u in the xyz system are related
to its q and f by:

u¼

0
@u1

u2

u3

1
A¼

0
@cos q sin f

sin q sin f

cos f

1
A ð8Þ

Second, the orientation of a triaxial ellipsoid is defined by
the three unit vectors e01, e02, and e03 parallel to its principal
axes, each in turn being defined by its corresponding polar co-
ordinate angles. However, because e01, e02, and e03 are mutually
perpendicular, only three polar angles are independent. In this
paper, we use the triplet q1 and f1 (for the a1-axis) plus q2 (for
the a2-axis) to define the orientation of a triaxial ellipsoidal
object (Fig. 3a). For a spheroidal object, its orientation can
be defined by the triplet made of the two polar angles of the
unique axis (q1 and f1) plus an arbitrary q2. In the special
case of a1-axis being horizontal (i.e., f1¼p/2), the orientation
of the ellipsoidal object can be defined by the triplet q1, f1 and
f2 (Fig. 3b).

For e01 (a1-axis), we have:

e01 ¼

0
@ cos q1 sin f1

sin q1 sin f1

cos f1

1
A ð9Þ

By considering Fig. 4, it can be seen that the plunge angle
of a2-axis, r, is equal to the apparent dip of the a2a3-plane in
the direction of q2. We therefore have r ¼ tan�1ðsin k tan f1Þ
which leads to f2 ¼ ðp=2Þ þ tan�1ðcosðq1 � q2Þtan f1Þ if
f1sp=2. As mentioned before, if f1 ¼ p=2, f2 instead of
q2 must be used as an independent variable to define the ori-
entation of the object. In general, we therefore have, for e02
(a2-axis):
e02 ¼

0
B@

cos q2 sin f2

sin q2 sin f2

cos f2

1
CA¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0
B@
�sin q1 sin f2

cos q1 sin f2

cos f2

1
CA; if f1 ¼

p

2

0
B@

cos q2 cos½tan�1ðcosðq1� q2Þtan f1Þ�
sin q2 cos½tan�1ðcosðq1� q2Þtan f1Þ�
�sin½tan�1ðcosðq1� q2Þtan f1Þ�

1
CA; otherwise

ð10Þ
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Fig. 2. (a) The orientation of a line in 3D space is represented by a unit vector, u. The two polar coordinate angles used in this paper to define the orientation of

a line are: q, the angle between the projection of u in xy-plane with the x-axis and f the angle between u and the z-axis. (b) If xyz is a geographic coordinate system,

then q and f are simply related to the trend and plunge of u. See text for details.
Finally, e03 can be obtained by the cross product of e01 and e02:

e03 ¼ e01 � e02 ð11Þ
The rotation tensor Q can now be expressed as:

Q¼

0
@ e0T1

e0T2
e0T3

1
A ð12Þ
By now we have expressed the terms on the right-hand side of
Eq. (7) in terms of the orientation of the rigid object, its shape
(B1 and B2), and the matrix flow. We now proceed with solving
Eq. (7).

4. Rotation path of a single rigid object

Except for some special cases (Jeffery, 1922; Gay, 1966,
1968a; Je�zek et al., 1996; Supplementary file), Eq. (7) must
a1
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θ2 = θ1+90°θ2
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Fig. 3. Stereographic projection of the principal axes of a triaxial object demonstrating that the orientation of a triaxial ellipsoidal object can be uniquely defined by

three polar coordinate angles: q1, f1 (sp/2) of the a1-axis plus q2 for the a2-axis (a). The diagram is for the case the down plunge direction is taken as the a1-axis

(plotting in the lower hemisphere, i.e. f1<p/2). Solid and dashed great circles are, respectively, lower and upper hemisphere projections of the a2a3-plane. If q2

lies in the shaded sector, a1-axis and a2-axis plot in the same hemisphere. Otherwise they plot in opposite hemisphere. (b) In the event f1¼p/2, the three polar

coordinate angles to define the orientation of the ellipsoid are q1, f1 and f2. The trend for the a2-axis is taken as q2¼ q1þp/2, and f2 is the angle between co-

ordinate z-axis and the a2-axis direction associated with the q2. If f2<p/2, the a2-axis lies in the lower hemisphere, otherwise it lies in the upper hemisphere. The

directions of the a1-, a2-, and the a3-axes are such that they form a right-handed coordinate system (Fig. 1). x, y, and z are geographic coordinate axes (Fig. 2b).
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be solved numerically. To do so, we use the RungeeKutta
fourth-order method (e.g., Jeffrey, 1995, pp. 340e341) which
for Eq. (7) leads to:

k1 ¼ dtQðtnÞe0iðtnÞ
k2 ¼ dtQ

�
tnþ dt

2

��
e0iðtnÞ þ 1

2
k1

�
k3 ¼ dtQ

�
tnþ dt

2

��
e0iðtnÞ þ 1

2
k2

�
k4 ¼ dtQðtnþ dtÞðe0iðtnÞ þ k3Þ

e0iðtnþ1Þze0iðtnÞ þ
1

6
ðk1þ 2k2 þ 2k3þ k4Þ

�
i¼ 1; 2; 3

�
ð13Þ

where dt is a small time increment.
Being ultimately a function of the current orientation,

e0iðtnÞ, of the object once the shape of the object and the
external flow are known, QðtnÞ in Eq. (13) can be calculated
(Eqs. (5) and (6)) from the current orientation e0iðtnÞ of the
object. To obtain Qðtn þ ðdt=2ÞÞ and Qðtn þ dtÞ for Eq.
(13), we need to first obtain the object orientation at
tn þ ðdt=2Þ and at tn þ dt. For this we use the Euler appr-
oximation e0iðtn þ ðdt=2ÞÞze0iðtnÞ þ ðdt=2ÞQðtnÞe0iðtnÞ and
e0iðtn þ dtÞze0iðtnÞ þ dtQðtnÞe0iðtnÞ.

Thus the right-hand side terms of Eq. (13) are all known
from the current state. With Eq. (13), this leads to the new
orientation e0iðtnþ1Þ of the object after a time increment dt.
Continuing with this iterative procedure, one tracks the rota-
tion path of the object from its initial orientation to its final
orientation. The time increment dt controls the precision of
the numerical calculation. The RungeeKutta method is
a very accurate method; the local error involved in the deter-
mination of e0iðtnþ1Þ from e0iðtnÞ is equivalent to the fifth order
of dt (Jeffrey, 1995, p. 341). Therefore, an estimate of the error
in the orientation of the object for each time step computation
is then on the order of jujðdtÞ5, where juj is the magnitude of
the instantaneous angular velocity. If we take an angular

a1

a2

a3

θ1

θ2 = θ1+90+κ

ρ
κ

ψ

φ1
φ1

θ1+90

Fig. 4. The geometrical relationship between q2, the pitch (j) and plunge (r) of

a2-axis on the a2a3-plane (shaded) which is normal to the a1-axis. k: angle

between trend of the a2-axis and the strike of a2a3-plane. According to the

definition of this paper f2¼p/2� r.
velocity of magnitude 1 Ma�1 (w3.17� 10�14 s�1), using
a dt¼ 0.01 Ma will yield an error on the order of 10�10 radians
for each step of computation.

The revolution (Jiang and Williams, 2004) of the rigid
object around its own principal axes, which is responsible
for the inclusion trail curvature within a syn-kinematically
grown porphyroblast, is described by the accumulated rotation
(U) e the time integral of the angular velocity around the
respective axis:

Ui ¼
Z t

0

u0i dt ði¼ 1; 2; 3Þ ð14Þ

This can be approximated numerically according to:

Uiz
Xn

m¼1

u0iðtmÞ$dt ði¼ 1; 2; 3Þ ð15Þ

A Mathcad� worksheet (Worksheet 1, in Supplement file) is
written based on the algorithm presented above. It can be
used to model the rotation path of any ellipsoidal object.
The output is in spreadsheet format that can be exported to
any stereonet projection program for plotting the rotation
paths.

5. Rotation of a population of non-interacting
rigid objects

Jeffery’s theory was developed for a single isolated ellipsoi-
dal rigid object. For a system of many rigid inclusions in a vis-
cous flow, if the inclusions are spaced far apart from one
another so that they do not interact, Jeffery’s theory would still
be applicable. The work of Mandal et al. (2003) suggests that
for pure shear flows if the spacing between adjacent objects is
greater than twice the size of the object, they are practically
non-interacting. Rotation of a large population of elongate
rigid objects can result in two types of fabrics: a preferred
orientation fabric (Je�zek et al., 1994, 1996) defined by the
alignment of the principal axes of the rigid objects and a shape
fabric.

To model the development of these two types of fabrics, the
solution scheme developed above for a single object must be
extended. One must first define the initial state of all the rigid
objects, i.e., the shape and orientation of each and every
object. For a population of N rigid objects, this means N sets
of (q1, f1, q2, B1, B2). Secondly, the numerical calculation
must track the rotation of each and every object for a given
flow to a given state of deformation.

5.1. Generation of the initial dataset and the evolution of
the orientation fabric

In forward modeling of fabric development of a population
of rigid objects, it is necessary to first generate a dataset of
rigid objects that follow certain distributions. In the following,
I first describe how to generate a set of lines following a given
distribution in 3D space, and then extend the method to
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generating a dataset for triaxial objects whose orientations
and/or shapes follow certain distributions.

To generate a dataset of lines with uniform random distri-
bution in 3D space, (Ramsay, 1967, pp. 163e164) and Sander-
son and Meneilly (1981) use a brute force method by placing
a uniform square grid at random over an equal-area stereonet
and reading the trend and plunge of each and every grid points.
While this method has been used by others (e.g., Je�zek, 1994;
Je�zek et al., 1996), it is tedious, especially if one wants to have
a large population of lines. It is not applicable if the distribu-
tion is not uniform. A general method for generating a set of
randomly distributed lines is described below.

Considering the surface of a unit sphere (Fig. 5), the area
element in the vicinity of a vector oriented at (q, f) is

dS¼ sin f$df$dq¼�dðcos fÞ$dq ð16Þ

Uniform distribution in 3D of a population of vectors requires
giving every area element of the same size identical probabil-
ity for a line to intersect. This means that q must be uniformly
distributed in its entire range of [0, 2p], and cos(f) must be
uniformly distributed in its entire range of [�1, 1]. It is very
simple to use a random number generator such as a spreadsheet
to generate a population of random numbers following
uniform distribution in the range [0, 2p] for q, and another
population of random numbers following the same distribution
in the range [�1, 1]. Converting the latter population of
numbers to the corresponding set of f’s using their inverse co-
sines, a set of (q, f) representing a uniformly distributing set
of lines is generated. The above method also applies to any
other type of distribution for the lines in 3D space.

Because each triaxial rigid object requires a triplet (q1, f1,
q2) to define its orientation in 3D, after generating the

dS

x

y

z

dS=sinφ dθ dφ=−dθ dcosφ

Fig. 5. An infinitesimal area element, dS, on the surface of a unit sphere is

expressed in terms of an infinitesimal increment in q and an infinitesimal

increment in cos(f). For a population of lines following certain distribution

(such as uniform) over the sphere, both q and cos(f) must follow that distri-

bution. See text for details.
population for the first two variables (the polar angles for
the a1-axis), we must find an associated population of q2’s to
complete the initial dataset for the orientations of the ellipsoi-
dal objects. Considering Fig. 4, in order for a2-axes to be
uniformly distributed, their pitches (j, see Fig. 4) on the
a2a3-plane must be uniformly distributed in its entire range
[0, p]. The following relationship can be obtained by consid-
ering Fig. 4:

k¼ tan�1ðcos f1 tan jÞ ð17aÞ

q2 ¼ q1þ
p

2
þ k¼ q1þ

p

2
þ tan�1ðcos f1 tan jÞ ð17bÞ

Therefore, we can generate a population of random num-
bers between 0 and p using a spreadsheet for j and then
calculate the corresponding set of q2 using Eq. (17b).

Fig. 6aec presents lower hemisphere equal-area projections
of the orientations of a population of 300 triaxial objects gen-
erated according to the method described above.

One may also make the variability of B1 and B2 (or equiv-
alently a1/a2 and a1/a3) follow certain distribution. Once the
initial dataset is complete, modeling the evolution of the orien-
tation fabric defined by the axes can be readily carried out
using an algorithm slightly modified from the one for single
object (Worksheet 2, Supplement file).

5.2. Shape fabric of rigid objects as observed on
a section of arbitrary orientation

As noted by some authors (e.g., Giorgis and Tikoff, 2004),
it is generally hard to obtain directly the 3D data of ellipsoidal
clasts. An ellipsoidal object exposes on a 2D section as an
ellipse. In many cases what one can directly measure in the
field are the aspect ratios (Rf) of the sectional ellipses and
the pitch angles (4) of the long axes of the ellipses e the
well-known Rf/4 data (Ramsay, 1967, Chapter 5; Dunnet,
1969; Lisle, 1985). It is therefore desirable to generate similar
modeling output that can be directly compared with field
observations. This is developed in the following.

The ellipsoidal surface of the object in the x0y0z0 system can
be expressed as:

x02

a2
1

þ y02

a2
2

þ z02

a2
3

¼ 1; or ð x0 y0 z0 Þ

0
BB@

1
a2

1

0 0

0 1
a2

2

0

0 0 1
a2

3

1
CCA
0
B@

x0

y0

z0

1
CA

¼ ð x0 y0 z0 ÞG0

0
B@

x0

y0

z0

1
CA¼ 1 ð18Þ

Since we are only concerned with the shape, rather than the
absolute size, of the ellipsoid, the a3-axis can be set to unity
and G0 in Eq. (18) can be expressed in terms of B1 and B2

of the ellipsoid:
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a1-axis

γ  = 0

γ  = 5

a2-axis a3-axis

(a) (b) (c)

(d) (e) (f)

Fig. 6. (aec) Lower hemisphere equal-area plot of the three principal axes of 300 triaxial objects (all 5:3:1) with uniform distribution (data generated using the

method described in the text). (def) After a shear strain of 5 in simple shear, the orientation fabric defined by the three axes, respectively. For orientation of the

flow, see Fig. 10d.
G0 ¼

0
@

1þB2

1�B2
0 0

0 1�B1

1þB1
0

0 0 1

1
A ð19Þ

In the external coordinate xyz, the ellipsoid tensor G0 is
expressed, following a tensor transformation, as:

G¼QTG0Q ð20Þ

The eigenvalues of G are the squares of the inverse of the three
principal axes of the ellipsoid and the corresponding eigenvec-
tors their directions.

Consider a geological plane (M ) striking at a and dipping
at b which cuts across the ellipsoid (Fig. 7). To explain how Rf

and 4 for the ellipse on M are calculated from G, consider
a right-handed coordinate system, chx, with c-axis parallel
to the strike of M, h-axis parallel to the dipline of M, and x-
axis normal to M and pointing down (Fig. 7). By considering
Fig. 7, in the xyz system, the three unit vectors parallel to the
c-, h-, and x-axis are evidently:
R1

ξ(α+180, 90-β)

χ (α
, 0

)

Rf=R1/R3

η (α+90, β)

R3

β

Fig. 7. On a geological section (M ) an ellipsoidal object exposes as an ellipse.

The axial ratio (Rf) and the pitch (4) of the long axis can be measured. chx is

the coordinate system for calculating Rf and 4 once the dip of M is given and

the ellipsoidal tensor is known. See text for details.



196 D. Jiang / Journal of Structural Geology 29 (2007) 189e200
(e) 0.31

0

0

1

-0.31L =

0

0

0

0

a1-axis

x

y

x

y

(a) (b)

(c) (d)

a2-axis

-80

-60

-40

-20

0

20

40

60

80

10 20 30
t

a1-axis

a2-axis

a3-axis
x

y

a3-axis

Fig. 8. Rotation paths (aec) and revolutions (d) for the principal axes of a triaxial ellipsoid (5:3:1) in a plane-strain flow (e). Initial orientation of the object:

a1-axis: 10�, 100�, a2-axis 45�, 360�, and a3-axis: 44�, 200�. See text for details.
c¼

0
B@

cos a

sin a

0

1
CA; h¼

0
B@
�sin a cos b

cos a cos b

sin b

1
CA;

x¼

0
B@

sina sin b

�cos a sin b

cos b

1
CA

ð21Þ

which yields the following tensor that transforms xyz coordi-
nates to chx coordinates:

Q1 ¼

0
@ cos a sin a 0
�sin a cos b cos a cos b sin b

sin a sin b �cos a sin b cos b

1
A ð22Þ
The ellipsoid tensor expressed in the chx coordinate system
is then:

Gchx ¼Q1GQT
1 ¼Q1QTG0QQT

1 ð23Þ

The shape and orientation of the ellipse as observed on plane
M are described by the following sub-matrix of Gchx:

Gsub ¼
�
ðGchxÞ11 ðGchxÞ12

ðGchxÞ21 ðGchxÞ22

�
ð24Þ

The aspect ratio Rf, and pitch 4 of the long axis of the ellipse
as observed on plane M can be obtained from the eigenvalues
and eigenvectors of Gsub.
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Fig. 9. Rotation paths (aec) and revolutions (d) for the principal axes of a triaxial ellipsoid (5:3:1) in a triclinic flow (e). Initial orientation of the object: a1-axis:

10�, 100�, a2-axis 45�, 360�, and a3-axis: 44�, 200�. VNS: vorticity-normal section. See text for details.
6. Applications

The Mathcad� worksheets (Supplement) of this paper can
be used for investigating (1) the motion of a single rigid object
in any given 3D viscous flows, (2) inclusion trail development
in syn-kinematically grown porphyroblasts, and (3) develop-
ment of preferred orientation and shape fabric for a population
of rigid objects of given initial orientation and shape distribu-
tion. These applications are described in more detail in the
following.

6.1. Rotation path and revolution of individual
rigid objects

The motion of a triaxial rigid object of any shape can be
approximated by that of an ellipsoidal object (Bretherton,
1962; Willis, 1977; Arbaret et al., 2001). In the limit, this
includes material lines and planes. The Mathcad� Worksheet
1 (Supplement) can be applied to investigate the rotational
behavior of a large variety of fabric elements. Jiang and
Williams (2004) applied Worksheet 1 to investigate the rota-
tion path of some triaxial and prolate rigid objects and the
development of inclusion trails in syn-kinematically grown
rigid porphyroblasts assuming that the shape of the porphyr-
oblasts does not change. They demonstrated that the rota-
tional behavior of elongated rigid objects is extremely
complex even in simple flow regimes. A small difference
in the initial orientation and/or shape of the object can result
in drastically different final inclusion trail geometries. I pres-
ent here two more examples to show the application of
Worksheet 1 for modeling the rotation of individual rigid
objects.
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Fig. 10. Rf/4 plots (aec) on three sections (orientation shown in (d)) at a shear strain of 5 under simple shear for a population of 300 triaxial objects (all 5:3:1) that

are uniformly oriented initially (Fig. 5 aec). The histogram associated with each section shows the 2D shape distribution of the ellipses. Data of this nature can be

obtained for a plane of any orientation.
To apply the modeling, first provide the input variables in
the ‘‘Input variables’’ part of the worksheet. The input vari-
ables include the flow velocity gradient tensor, L, (Fig. 8e),
the shape factors of the object, the initial orientation of the
object, and the incremental time size (dt). There are two addi-
tional variables, mm and STEPS in the worksheet. The variable
mm specifies the number of steps of computation between out-
put sets. In other words, in the output data, the time duration
between successive states of the object is mm dt. The variable
STEPS specifies the total number of steps of computation.
The total actual time duration of deformation is therefore
STEPS dt.

Fig. 8aec presents the rotation paths for the three principal
axes of a triaxial ellipsoid (5:3:1) with initial orientations: a1-
axis: 10�, 100�, a2-axis 45�, 360�, and a3-axis: 44�, 200� in
a plane-strain flow (Fig. 8e). Fig. 8d is the revolution around
each axis. All three axes reach stable orientations in this
case. Fig. 9aec presents the rotation paths for the three axes
of a triaxial ellipsoid of the same shape and initial orientations
as for Fig. 8 in a triclinic flow (Fig. 9e). Fig. 9d is the revolution
around each axis. No axes reach a stable orientation although
a1-axis ends up very close to the vorticity vector at high strain.

6.2. Development of preferred orientation fabric and
shape fabric for a population of rigid objects

To model the rotation of a population of rigid objects,
Worksheet 2 (Supplement) is used. In addition to the flow



199D. Jiang / Journal of Structural Geology 29 (2007) 189e200
velocity gradient tensor, L, the time increment, dt, and the to-
tal steps of computation, the input variables include the dataset
for the initial orientations and shapes of all the rigid objects
and the number of objects. The initial orientations and shapes
of objects are generated through Excel using the method
described above and inserted into the worksheet. If the Rf/4
data on a plane is required, one must provide the strike and
dip of the plane. The final output will include the trend and
plunge angles of the principal axes of each and every object
as well as the Rf/4 data on the 2D section.

Figs. 6 and 10 present results of an application of this
program. For a group of 300 triaxial objects of the same
shape (5:3:1) initially having uniform random distribution
(Fig. 6aec), in a simple shear deformation, at the state of
shear strain 5, a preferred orientation is clearly defined
(Fig. 6def). Fig. 10aec presents the Rf/4 results for three
sections (Fig. 10d) and the 2D clast shape distributions
(histogram associated with each Rf/4) as observed on the
three sections.

6.3. Discussion: the use of rigid clast data to constrain
natural deformation kinematic conditions

By numerical forward modeling approaches, field observa-
tions can be used to constrain natural deformation conditions.
Lin et al. (1998) and Lin and Jiang (2001) use the lineation
and foliation data from shear zones to constrain the boundary
movement conditions of the zones. The modeling worksheets
presented in the supplementary data associated with this paper
will be useful for using shape and preferred orientation data of
rigid clasts to constrain the deformation kinematics. Since in
general only 2D data in the form of Rf/4 are obtainable
from field measurement or from measurement on rock slabs
in the laboratory, one way to represent these data is to best
fit the 2D data on each section into a fabric ellipse using the
method of Robin (1977) designed for strain analysis and
then use the fabric ellipses from three or more sections to de-
rive a 3D fabric ellipsoid using the method of Robin (2002)
and Launeau and Robin (2005). Similarly, Worksheet 2 (Sup-
plement) can readily predict the Rf/4 data on any given sec-
tions which can be used to derive the 3D fabric ellipsoid at
any stage of deformation for given boundary conditions. The
fabric ellipsoid determined from field data can then be com-
pared with the model-produced fabric ellipsoid to test the
soundness of the given deformation conditions.

7. Concluding remarks

The algorithm presented in this paper and its implementa-
tion in the fully graphic mathematics application (Mathcad�)
make modeling based on Jeffery’s theory much simpler than
using command-line programs. The Mathcad worksheets
allow the modeling of all aspects related to the motion of rigid
objects, including (1) the rotation path of a single rigid object,
(2) the development of inclusion trail geometry in syn-
kinematic rigid porphyroblasts, and (3) the development of
preferred orientation and shape fabrics for a population of
rigid objects, to be performed in a unified modeling environ-
ment. The shape and preferred orientation fabrics for a popula-
tion of rigid objects can be presented in both a 3D form and
a 2D form, allowing easy comparison between field data and
model predictions. The modeler can interact fully with the
computation to customize the modeling so that the type and
format of the output data best fit the purpose of the
investigation.
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